Pierre de Fermat

Pierre de Fermat
Pierre de Fermat– 12 January 1665) was a French lawyer at the Parlement of Toulouse, France, and a mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of the differential calculus, then unknown, and his research into number theory. He made notable contributions...
NationalityFrench
ProfessionLawyer
Date of Birth20 August 1601
CountryFrance
I have discovered a truly marvelous proof of this, which however the margin is not large enough to contain.
I will share all of this with you whenever you wish.
But it is impossible to divide a cube into two cubes, or a fourth power into fourth powers, or generally any power beyond the square into like powers; of this I have found a remarkable demonstration. This margin is too narrow to contain it.
And perhaps, posterity will thank me for having shown it that the ancients did not know everything.
And perhaps, posterity will thank me for having shown that the ancients did not know everything.
I have found a very great number of exceedingly beautiful theorems.
I am more exempt and more distant than any man in the world
It is impossible for any number which is a power greater than the second to be written as a sum of two like powers. I have a truly marvelous demonstration of this proposition which this margin is too narrow to contain.
To divide a cube into two other cubes, a fourth power, or in general any power whatever into two powers of the same denomination above the second is impossible, and I have assuredly found an admirable proof of this, but the margin is too narrow to contain it.