Gottfried Leibniz

Gottfried Leibniz
Gottfried Wilhelm von Leibnizwas a German polymath and philosopher who occupies a prominent place in the history of mathematics and the history of philosophy, having developed differential and integral calculus independently of Isaac Newton. Leibniz's notation has been widely used ever since it was published. It was only in the 20th century that his Law of Continuity and Transcendental Law of Homogeneity found mathematical implementation. He became one of the most prolific inventors in the field of mechanical calculators. While...
NationalityGerman
ProfessionPhilosopher
Date of Birth1 July 1646
CityLeipzig, Germany
CountryGermany
Our reasonings are grounded upon two great principles, that of contradiction, in virtue of which we judge false that which involves a contradiction, and true that which is opposed or contradictory to the false.
What is is what must be.
It is unworthy of excellent men to lose hours like slaves in the labor of calculation which could be relegated to anyone else if machines were used.
One cannot explain words without making incursions into the sciences themselves, as is evident from dictionaries; and, conversely, one cannot present a science without at the same time defining its terms.
[Alternate translation:] The Divine Spirit found a sublime outlet in that wonder of analysis, that portent of the ideal world, that amphibian between being and not-being, which we call the imaginary root of negative unity.
Music is the pleasure the human mind experiences from counting without being aware that it is counting.
Taking mathematics from the beginning of the world to the time when Newton lived, what he had done was much the better half.
Finally there are simple ideas of which no definition can be given; there are also axioms or postulates, or in a word primary principles, which cannot be proved and have no need of proof.
It can have its effect only through the intervention of God, inasmuch as in the ideas of God a monad rightly demands that God, in regulating the rest from the beginning of things, should have regard to itself.
I maintain also that substances, whether material or immaterial, cannot be conceived in their bare essence without any activity, activity being of the essence of substance in general.
It follows from what we have just said, that the natural changes of monads come from an internal principle, since an external cause would be unable to influence their inner being.
There are also two kinds of truths: truth of reasoning and truths of fact. Truths of reasoning are necessary and their opposite is impossible; those of fact are contingent and their opposite is possible.
The ultimate reason of things must lie in a necessary substance, in which the differentiation of the changes only exists eminently as in their source; and this is what we call God.
It is this way that in mathematics speculative theorems and practical canons are reduced by analysis to definitions, axioms and postulates.