Brian Greene
Brian Greene
Brian Randolph Greeneis an American theoretical physicist and string theorist. He has been a professor at Columbia University since 1996 and chairman of the World Science Festival since co-founding it in 2008. Greene has worked on mirror symmetry, relating two different Calabi–Yau manifolds. He also described the flop transition, a mild form of topology change, showing that topology in string theory can change at the conifold point...
NationalityAmerican
ProfessionScientist
Date of Birth9 February 1963
CityNew York City, NY
CountryUnited States of America
There are many of us thinking of one version of parallel universe theory or another. If it's all a lot of nonsense, then it's a lot of wasted effort going into this far-out idea. But if this idea is correct, it is a fantastic upheaval in our understanding.
I've had various experiences where I've been called by Hollywood studios to look at a script or comment on various scientific ideas that they're trying to inject into a story.
The idea that there could be other universes out there is really one that stretches the mind in a great way.
Black holes provide theoreticians with an important theoretical laboratory to test ideas. Conditions within a black hole are so extreme, that by analyzing aspects of black holes we see space and time in an exotic environment, one that has shed important, and sometimes perplexing, new light on their fundamental nature.
The central idea of string theory is quite straightforward. If you examine any piece of matter ever more finely, at first you'll find molecules, atoms, sub-atomic particles. Probe the smaller particles, you'll find something else, a tiny vibrating filament of energy, a little tiny vibrating string.
There's no way that scientists can ever rule out religion, or even have anything significant to say about the abstract idea of a divine creator.
We do not know whether there are extra dimensions or multiverse. Let's go forward with the possible ideas that come out of the mathematics. It's hard for us to imagine a universe that would have no time at all.
In quantum mechanics there is A causing B. The equations do not stand outside that usual paradigm of physics. The real issue is that the kinds of things you predict in quantum mechanics are different from the kinds of things you predict using general relativity. Quantum mechanics, that big, new, spectacular remarkable idea is that you only predict probabilities, the likelihood of one outcome or another. That's the new idea.
I think individuals are enormously surprised by the progress. When you look around the world, it's a very rich but complex place. When you understand the physics behind it, you understand it's a few simple laws ... if these cutting-edge ideas are correct.
Science is a self-correcting discipline that can, in subsequent generations, show that previous ideas were not correct.
When we benefit from CT scanners, M.R.I. devices, pacemakers and arterial stents, we can immediately appreciate how science affects the quality of our lives.
Time allows change to take place and the very evolution of the universe is what requires some conception of time. Mathematically can we write down a universe that doesn't have time? Sure. Do we think that would be realised in the larger reality that is out there? None of us take that possibility seriously.
But if you think about a practical implication of enriching your life and giving you a sense of being part of a larger cosmos and possibly being able to use this [gravitational waves] as a tool in the future maybe to listen not just to black holes colliding, but maybe listen to the big bang itself, those kind of applications may happen in the not too distant future.
General relativity is in the old Newtonian framework where you predict what will happen, not the probability of what will happen. And putting together the probabilities of quantum mechanics with the certainty of general relativity, that's been the big challenge and that's why we have been excited about string theory, as it's one of the only approaches that can put it together.